Copied to
clipboard

G = C42.176D6order 192 = 26·3

176th non-split extension by C42 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.176D6, C6.382- 1+4, C4:Q8:14S3, C4:C4.125D6, (Q8xDic3):23C2, (C2xQ8).172D6, Dic3.Q8:42C2, (C2xC6).275C24, C42:2S3.9C2, D6:3Q8.13C2, C12.6Q8:25C2, C12.138(C4oD4), C4.42(D4:2S3), (C2xC12).108C23, (C4xC12).216C22, D6:C4.154C22, (C6xQ8).142C22, Dic3:C4.63C22, C4:Dic3.254C22, C22.296(S3xC23), (C22xS3).120C23, C2.39(Q8.15D6), C3:7(C22.35C24), (C4xDic3).164C22, (C2xDic3).273C23, (C3xC4:Q8):17C2, C4:C4:S3.4C2, C6.101(C2xC4oD4), C2.65(C2xD4:2S3), (S3xC2xC4).148C22, (C3xC4:C4).218C22, (C2xC4).221(C22xS3), SmallGroup(192,1290)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C42.176D6
C1C3C6C2xC6C22xS3S3xC2xC4D6:3Q8 — C42.176D6
C3C2xC6 — C42.176D6
C1C22C4:Q8

Generators and relations for C42.176D6
 G = < a,b,c,d | a4=b4=1, c6=a2, d2=a2b2, ab=ba, cac-1=dad-1=a-1, cbc-1=b-1, dbd-1=a2b-1, dcd-1=b2c5 >

Subgroups: 400 in 192 conjugacy classes, 95 normal (19 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2xC4, C2xC4, C2xC4, Q8, C23, Dic3, C12, C12, D6, C2xC6, C42, C42, C22:C4, C4:C4, C4:C4, C22xC4, C2xQ8, C4xS3, C2xDic3, C2xDic3, C2xC12, C2xC12, C3xQ8, C22xS3, C42:C2, C4xQ8, C22:Q8, C42.C2, C42:2C2, C4:Q8, C4xDic3, C4xDic3, Dic3:C4, C4:Dic3, D6:C4, C4xC12, C3xC4:C4, S3xC2xC4, C6xQ8, C22.35C24, C12.6Q8, C42:2S3, Dic3.Q8, C4:C4:S3, Q8xDic3, D6:3Q8, C3xC4:Q8, C42.176D6
Quotients: C1, C2, C22, S3, C23, D6, C4oD4, C24, C22xS3, C2xC4oD4, 2- 1+4, D4:2S3, S3xC23, C22.35C24, C2xD4:2S3, Q8.15D6, C42.176D6

Smallest permutation representation of C42.176D6
On 96 points
Generators in S96
(1 52 7 58)(2 59 8 53)(3 54 9 60)(4 49 10 55)(5 56 11 50)(6 51 12 57)(13 73 19 79)(14 80 20 74)(15 75 21 81)(16 82 22 76)(17 77 23 83)(18 84 24 78)(25 62 31 68)(26 69 32 63)(27 64 33 70)(28 71 34 65)(29 66 35 72)(30 61 36 67)(37 93 43 87)(38 88 44 94)(39 95 45 89)(40 90 46 96)(41 85 47 91)(42 92 48 86)
(1 64 80 41)(2 42 81 65)(3 66 82 43)(4 44 83 67)(5 68 84 45)(6 46 73 69)(7 70 74 47)(8 48 75 71)(9 72 76 37)(10 38 77 61)(11 62 78 39)(12 40 79 63)(13 26 57 90)(14 91 58 27)(15 28 59 92)(16 93 60 29)(17 30 49 94)(18 95 50 31)(19 32 51 96)(20 85 52 33)(21 34 53 86)(22 87 54 35)(23 36 55 88)(24 89 56 25)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 6 74 79)(2 78 75 5)(3 4 76 77)(7 12 80 73)(8 84 81 11)(9 10 82 83)(13 58 51 20)(14 19 52 57)(15 56 53 18)(16 17 54 55)(21 50 59 24)(22 23 60 49)(25 28 95 86)(26 85 96 27)(29 36 87 94)(30 93 88 35)(31 34 89 92)(32 91 90 33)(37 44 66 61)(38 72 67 43)(39 42 68 71)(40 70 69 41)(45 48 62 65)(46 64 63 47)

G:=sub<Sym(96)| (1,52,7,58)(2,59,8,53)(3,54,9,60)(4,49,10,55)(5,56,11,50)(6,51,12,57)(13,73,19,79)(14,80,20,74)(15,75,21,81)(16,82,22,76)(17,77,23,83)(18,84,24,78)(25,62,31,68)(26,69,32,63)(27,64,33,70)(28,71,34,65)(29,66,35,72)(30,61,36,67)(37,93,43,87)(38,88,44,94)(39,95,45,89)(40,90,46,96)(41,85,47,91)(42,92,48,86), (1,64,80,41)(2,42,81,65)(3,66,82,43)(4,44,83,67)(5,68,84,45)(6,46,73,69)(7,70,74,47)(8,48,75,71)(9,72,76,37)(10,38,77,61)(11,62,78,39)(12,40,79,63)(13,26,57,90)(14,91,58,27)(15,28,59,92)(16,93,60,29)(17,30,49,94)(18,95,50,31)(19,32,51,96)(20,85,52,33)(21,34,53,86)(22,87,54,35)(23,36,55,88)(24,89,56,25), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,6,74,79)(2,78,75,5)(3,4,76,77)(7,12,80,73)(8,84,81,11)(9,10,82,83)(13,58,51,20)(14,19,52,57)(15,56,53,18)(16,17,54,55)(21,50,59,24)(22,23,60,49)(25,28,95,86)(26,85,96,27)(29,36,87,94)(30,93,88,35)(31,34,89,92)(32,91,90,33)(37,44,66,61)(38,72,67,43)(39,42,68,71)(40,70,69,41)(45,48,62,65)(46,64,63,47)>;

G:=Group( (1,52,7,58)(2,59,8,53)(3,54,9,60)(4,49,10,55)(5,56,11,50)(6,51,12,57)(13,73,19,79)(14,80,20,74)(15,75,21,81)(16,82,22,76)(17,77,23,83)(18,84,24,78)(25,62,31,68)(26,69,32,63)(27,64,33,70)(28,71,34,65)(29,66,35,72)(30,61,36,67)(37,93,43,87)(38,88,44,94)(39,95,45,89)(40,90,46,96)(41,85,47,91)(42,92,48,86), (1,64,80,41)(2,42,81,65)(3,66,82,43)(4,44,83,67)(5,68,84,45)(6,46,73,69)(7,70,74,47)(8,48,75,71)(9,72,76,37)(10,38,77,61)(11,62,78,39)(12,40,79,63)(13,26,57,90)(14,91,58,27)(15,28,59,92)(16,93,60,29)(17,30,49,94)(18,95,50,31)(19,32,51,96)(20,85,52,33)(21,34,53,86)(22,87,54,35)(23,36,55,88)(24,89,56,25), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,6,74,79)(2,78,75,5)(3,4,76,77)(7,12,80,73)(8,84,81,11)(9,10,82,83)(13,58,51,20)(14,19,52,57)(15,56,53,18)(16,17,54,55)(21,50,59,24)(22,23,60,49)(25,28,95,86)(26,85,96,27)(29,36,87,94)(30,93,88,35)(31,34,89,92)(32,91,90,33)(37,44,66,61)(38,72,67,43)(39,42,68,71)(40,70,69,41)(45,48,62,65)(46,64,63,47) );

G=PermutationGroup([[(1,52,7,58),(2,59,8,53),(3,54,9,60),(4,49,10,55),(5,56,11,50),(6,51,12,57),(13,73,19,79),(14,80,20,74),(15,75,21,81),(16,82,22,76),(17,77,23,83),(18,84,24,78),(25,62,31,68),(26,69,32,63),(27,64,33,70),(28,71,34,65),(29,66,35,72),(30,61,36,67),(37,93,43,87),(38,88,44,94),(39,95,45,89),(40,90,46,96),(41,85,47,91),(42,92,48,86)], [(1,64,80,41),(2,42,81,65),(3,66,82,43),(4,44,83,67),(5,68,84,45),(6,46,73,69),(7,70,74,47),(8,48,75,71),(9,72,76,37),(10,38,77,61),(11,62,78,39),(12,40,79,63),(13,26,57,90),(14,91,58,27),(15,28,59,92),(16,93,60,29),(17,30,49,94),(18,95,50,31),(19,32,51,96),(20,85,52,33),(21,34,53,86),(22,87,54,35),(23,36,55,88),(24,89,56,25)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,6,74,79),(2,78,75,5),(3,4,76,77),(7,12,80,73),(8,84,81,11),(9,10,82,83),(13,58,51,20),(14,19,52,57),(15,56,53,18),(16,17,54,55),(21,50,59,24),(22,23,60,49),(25,28,95,86),(26,85,96,27),(29,36,87,94),(30,93,88,35),(31,34,89,92),(32,91,90,33),(37,44,66,61),(38,72,67,43),(39,42,68,71),(40,70,69,41),(45,48,62,65),(46,64,63,47)]])

36 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C···4H4I4J4K4L4M···4Q6A6B6C12A···12F12G12H12I12J
order122223444···444444···466612···1212121212
size1111122224···4666612···122224···48888

36 irreducible representations

dim1111111122222444
type++++++++++++--
imageC1C2C2C2C2C2C2C2S3D6D6D6C4oD42- 1+4D4:2S3Q8.15D6
kernelC42.176D6C12.6Q8C42:2S3Dic3.Q8C4:C4:S3Q8xDic3D6:3Q8C3xC4:Q8C4:Q8C42C4:C4C2xQ8C12C6C4C2
# reps1114422111424224

Matrix representation of C42.176D6 in GL6(F13)

1200000
0120000
000029
0000411
0011400
009200
,
800000
850000
000010
000001
0012000
0001200
,
1110000
0120000
001604
007794
0004127
009466
,
1220000
1210000
006649
0012709
009466
0004127

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,11,9,0,0,0,0,4,2,0,0,2,4,0,0,0,0,9,11,0,0],[8,8,0,0,0,0,0,5,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,1,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,11,12,0,0,0,0,0,0,1,7,0,9,0,0,6,7,4,4,0,0,0,9,12,6,0,0,4,4,7,6],[12,12,0,0,0,0,2,1,0,0,0,0,0,0,6,12,9,0,0,0,6,7,4,4,0,0,4,0,6,12,0,0,9,9,6,7] >;

C42.176D6 in GAP, Magma, Sage, TeX

C_4^2._{176}D_6
% in TeX

G:=Group("C4^2.176D6");
// GroupNames label

G:=SmallGroup(192,1290);
// by ID

G=gap.SmallGroup(192,1290);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,120,758,219,100,675,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^6=a^2,d^2=a^2*b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=b^-1,d*b*d^-1=a^2*b^-1,d*c*d^-1=b^2*c^5>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<